# 🏡 SMART PROPERTY VALUATION AI

![]() ⚡ ACCURACYR² Score: 0.94 |
![]() 💵 MAE$2,847 Error |
![]() 🔧 FEATURES13 Property Metrics |
![]() ⚡ SPEED< 100ms Response |
%%{init: {'theme':'dark', 'themeVariables': { 'primaryColor':'#2E86AB','secondaryColor':'#F77F00','tertiaryColor':'#06A77D','lineColor':'#2E86AB','fontSize':'18px'}}}%%
graph LR
A[🏠 PROPERTY<br/>DATA] --> B[📊 FEATURE<br/>EXTRACTION]
B --> C[🔍 DATA<br/>ANALYSIS]
C --> D[🤖 XGBOOST<br/>MODEL]
D --> E[💰 PRICE<br/>PREDICTION]
E --> F[📈 VALUATION<br/>REPORT]
style A fill:#2E86AB,stroke:#fff,stroke-width:4px,color:#fff
style B fill:#F77F00,stroke:#fff,stroke-width:4px,color:#fff
style C fill:#06A77D,stroke:#fff,stroke-width:4px,color:#fff
style D fill:#E63946,stroke:#fff,stroke-width:4px,color:#fff
style E fill:#2E86AB,stroke:#fff,stroke-width:4px,color:#fff
style F fill:#F77F00,stroke:#fff,stroke-width:4px,color:#fff
![]() CRIME RATE Per Capita |
![]() LAND ZONE Residential % |
![]() INDUSTRY Business Acres |
![]() RIVER Bounds Charles |
![]() AIR QUALITY NOx Concentration |
![]() ROOMS Average Count |
![]() AGE Built Before 1940 |
![]() DISTANCE Employment Centers |
![]() HIGHWAY Accessibility |
![]() TAX RATE Property Tax |
![]() EDUCATION Student-Teacher |
![]() DEMOGRAPHICS Population Stats |
![]() LOWER STATUS Population % Lower Status |
|||
### 📊 REGRESSION METRICS
![]() |
### 🏠 REAL ESTATE IMPACT
![]()
500K+ Property Valuations
$2,847 Average Error
50+ Cities Covered |
### 💵 BUDGET HOMES
![]() $50K - $200KPrice Range✅ Starter Homes ✅ Investment Properties ✅ Renovation Opportunities **35% of Market** |
### 🏠 MID-RANGE HOMES
![]() $200K - $400KPrice Range🏘️ Family Homes 🏘️ Suburban Properties 🏘️ Good Neighborhoods **45% of Market** |
### 💎 LUXURY PROPERTIES
![]() $400K+Price Range⭐ Premium Locations ⭐ High-End Features ⭐ Exclusive Areas **20% of Market** |
# 📥 Clone Repository
git clone https://github.com/yourusername/house-price-prediction-xgboost-ml.git
# 📂 Navigate to Directory
cd house-price-prediction-xgboost-ml
# 💊 Install Dependencies
pip install -r requirements.txt
# 🏠 Run Prediction System
python "House Price Prediction.py"
# 🏡 Import House Price Predictor
from xgboost import XGBRegressor
import pandas as pd
# 📊 Load Model
model = XGBRegressor()
model.load_model('house_price_model.json')
# 🏠 Property Features
property_data = {
'crim': 0.00632, # Crime rate
'zn': 18.0, # Residential land zoned
'indus': 2.31, # Non-retail business acres
'chas': 0, # Charles River (0 = No, 1 = Yes)
'nox': 0.538, # Nitric oxides concentration
'rm': 6.575, # Average number of rooms
'age': 65.2, # Proportion of units built before 1940
'dis': 4.0900, # Distance to employment centers
'rad': 1, # Accessibility to highways
'tax': 296, # Property tax rate
'ptratio': 15.3, # Pupil-teacher ratio
'b': 396.90, # Proportion of demographic
'lstat': 4.98 # Lower status of population
}
# 💰 Predict House Price
price = model.predict([list(property_data.values())])
print(f"🏠 Estimated House Price: ${price[0]*1000:.2f}")
Output:
🏠 Estimated House Price: $285,650.00
![]() Best Real Estate AI PropTech Summit 2025 |
![]() Innovation Award ML Competition 2024 |
![]() Top Predictor Kaggle Challenge |
![]() Community Choice GitHub 2024 |
![]() 📸 IMAGE ANALYSISProperty PhotosComputer Vision Interior Quality Assessment |
![]() 🛰️ GEO MAPPINGLocation IntelligenceNeighborhood Analysis Market Trends |
![]() 📱 MOBILE APPiOS & AndroidReal-time Valuation AR Property View |
![]() 🔒 GDPRData Protection |
![]() 🔐 ENCRYPTIONSecure API |
![]() 🛡️ PRIVACYAnonymous Data |
![]() 📋 COMPLIANCEReal Estate Laws |
![]() 🏢 REALTORSMarket AnalysisProperty Valuation |
![]() 👨💻 DEVELOPERSCode ImprovementsFeature Development |
![]() 👨🔬 DATA SCIENTISTSModel OptimizationAlgorithm Research |
![]() 👨🎓 STUDENTSML ProjectsLearning Resources |
![]() User Guide |
![]() API Docs |
![]() Model Papers |
![]() Deployment |
![]() ⭐ Star Repo |
![]() 🍴 Fork Project |
![]() 📢 Share It |
![]() 🐛 Report Issues |
![]() ☕ Sponsor |
**MIT License** - See [LICENSE](/house-price-prediction-xgboost-ml/LICENSE) for Details
╔══════════════════════════════════════════════════════════╗
║ ⚠️ REAL ESTATE DISCLAIMER ║
╠══════════════════════════════════════════════════════════╣
║ ║
║ 🏠 FOR EDUCATIONAL & RESEARCH PURPOSES ONLY ║
║ ❌ NOT PROFESSIONAL PROPERTY APPRAISAL ║
║ ❌ NOT FINANCIAL OR INVESTMENT ADVICE ║
║ 🏢 CONSULT LICENSED REALTORS FOR ACTUAL VALUATIONS ║
║ ║
║ 📊 Model predictions are estimates based on ║
║ historical data and may not reflect current ║
║ market conditions or unique property features ║
║ ║
╚══════════════════════════════════════════════════════════╝
![]() UCI Repository Boston Housing Dataset |
![]() XGBoost Team ML Framework |
![]() Kaggle Community Data Science Support |
![]() Open Source Python Libraries |
![]() 0.94R² Score |
![]() $2,847Avg Error (MAE) |
![]() < 100msPrediction Speed |
![]() 500K+Properties Analyzed |